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Sharp characterization of minimizers (typically) involving interfaces in images

Motivation and Background: Dealing with the enormous, accelerating flood of data
is rapidly becoming the single most pressing issue in many scientific and strategic chal-
lenges. Much of this data consists of images. Examples include surveillance videos, satellite
or airborne imagery, micrographs from a variety of sources, astronomical observations, and
tomographic or radiographic measurements. Defensible quantification of uncertainty for the
analysis of this data flood requires in turn, not only automation but also precise characteri-
zation of the underlying methods. Analysis of scientific data is a case in point. Rigorously
defensible inference from scientific images requires optimal extraction of information with
quantified uncertainty. Considering this, we see why precisely characterized computational
image analysis methods are of utmost importance.

Simply put, for precise inferences from this ever growing stream of data, we need precise
characterizations of the underlying numerical methods.

Edges are often among the most important features in an image. If an image is a mea-
surement from a scientific experiment, the interfaces these edges capture can be critically
important to understanding what the measurement is telling us. Consequently a large effort
has been spent developing methods which process or analyze images in such a way as to
preserve, enhance, or extract those edges.

The variational approach to various image analysis tasks minimizes a sum of at least two
terms,

muin F(u) = R(u) + DF(u, f). (1)

There is typically a regularization R(u) term encouraging minimizers u to be “nice”. By nice
we mean that u is smooth or has small high frequency components or belongs to some lower
dimensional subspace, etc. And there is typically a data fidelity term DF(u, f) encouraging
u to be close to the input image f. (There can of course be other terms which minimize as
u approaches various goals defined by the task at hand. We will stick with these two since
they are enough for the purposes of this introduction.)

As a concrete example, we consider the functional introduced by Rudin, Osher, and
Fatemi in 1992 [6]. They suggested the total variation (TV) seminorm for regularization
when denoising images. More precisely, the ROF functional is defined by

F(u) :/\Vu\d:z:+)\/\u—f|2dx. (2)

The regularization term [ |Vu|dz (the TV seminorm) reduces oscillations in u. Very sig-
nificantly, it is not biased against discontinuities. That is, even though TV prefers less
oscillatory images u, it does not prefer smoothed transitions over sharp jumps. We illustrate
this now.

Figure 1 shows 4 functions mapping the unit interval to the unit interval. Each function
is 0 at 0 and 1 at 1. Each function is monotonically increasing. And the total variation
([ IV fldz) of each is exactly 1. What should be noticed is that TV measures total change
(oscillation), not how quickly this change is made. In our example, a function transitioning
discontinuously from 0 to 1 has the same total variation as a function transitioning smoothly.
The second (data fidelity) term on the right hand side of Equation 2 measures how close u,
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z=0 T : 1
Figure 1: Each of the four functions has the same TV seminorm.

the candidate denoised image, is to the input data f.

From a probabilistic viewpoint, (ignoring complications due to infinite dimensionality),
we might try maximizing the probability of u given the data f as an approach to denoising.
This probability, p(u|f) called the posterior, can be maximized using Bayes relation,

p(ulf) ~ p(flu)p(u),

where p(f|u) is the likelihood (probability of data given true image is u) and p(u) is the
prior distribution on true images. If we take

p(u) ~ e~ JIVuldz (a reasonable smoothing energy), and

p(flu) ~ e M= (Gaugsian measurement errors)

then, upon taking the negative logarithms and ignoring constant terms, we get
~loglpu)) = [ [Vulds
~log(plflu) = A [ lu~ fPde

We now want to minimize F(u), given by

F(u) = —log(p(u|f)) :/]Vu]d:c+)\/]u—f|2dx.

But this is exactly the ROF functional.
This explains identifications sometimes made:

regularization term = the prior, and
data fidelity term = the likelihood function.

The main point to take away from this probabilistic detour is that: 1) the regularization
term quantifies, independently of measurement, how reasonable a proposed denoised image
u is, and 2) the data fidelity term quantifies how reasonable u is as a measurement of f.
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With this very brief look at variational functionals, we move on to the critical questions
we intend to address.

What are the pressing questions for TV regularized variational methods?

1) How close is a computation to convergence? Because we typically cannot compute
minimizers analytically, various numerical methods are used to approximate minimizers.
How do we know when a particular computation has converged? How does convergence
depend on input data? For instance, can we relate local measures of regularity to local con-
vergence rates? For scientific images, precise inferences can depend critically on convergence.
2) What are the precise geometric properties of the minimizers? The TV seminorm
tries to minimize the lengths of level sets of u while the data fidelity term attempts to enforce
close agreement with the input image. These two driving forces, typically in opposition,
balance each other at the minimizer. What does this balance tell us about the geometry of
the minimizer? Can we use this information to build exact minimizers? (Previous work on
exact minimizers is limited to 1-dimensional cases (ROF), discrete cases (L'TV and ROF)
or very special cases in 2-D (ROF). See references in [3] for details.)

3) Can we create a hybrid analytic/numerical approach to minimization by ex-
ploiting 2)? It would seem that exact solutions for a rich enough family of input images f
should enable us to construct a hybrid scheme giving us better control over solution errors.
What are the obstacles, if any, to doing this?

New Science and Research Plan:

Using tools from geometric measure theory, we have very recently [5,1,2] developed in-
sights into the precise nature of minimizers for the L'TV functional, defined by

F(u) —/|Vu|da:+)\/|u—f|dx, (3)

(note the L' data fidelity term) and for the ROF functional, which you recall is given by

F(u) :/\Vu\d:c+)\/\u—f\2d:c.

(See [3] for more background on the L'TV functional.) As a result, we can now construct
whole families of non-trivial, exact minimizers for the L!TV and ROF functionals.

Geometric measure theory, though very natural and intuitively appealing, can be quite
intricate and technically demanding. Fortunately, although we used significant parts of
geometric measure theory, the insights gained are simple to state and understand. We
briefly skim these insights.

In what follows, we will work in R? which is sufficient for most image analysis applications.
Q and ¥ will be subsets of R? yp will denote the characteristic function of £ C R? (i.e.
Xe = 1 on E and 0 otherwise), B, will be a ball of radius r, and F will denote the boundary
of E (glossing over many issues which lead to various refinements like the reduced boundary
and the measure theoretic boundary). We use the fact that f = xq implies there is an L'TV
minimizer u = Yy, to refer to input data by either f = xo or €2 and to the minimizer by
either u = yx or X. Q will always correspond to input data and ¥ will always correspond
to the minimizer.
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Insight #1: For the L'TV functional, B2 c Q — B2 C . Likewise, B2 C ¢ —
Bz C ¢ This permits a first pass at determmmg the exact solution: d¥ is in tf\le envelope
between the B2 outside of €2 and the B2 inside €2. This is illustrated in the Figure 2.

(Related tidbit: Oc B2 ,e>0—X= {the empty set} is the unique minimizer.)

—€)

Figure 2: As a result of insight #1, we know that the boundary of the minimizer ¥ lies
between the red(exterior) and blue(interior) balls.

Insight #2: For the L' TV functional, B2 almost in 0 — 32 almost in Y. Think of noise
removing small parts of {2 or adding smaﬁ islands of noise outside of Q. This insight says
the minimizer is almost not affected by that noise. Therefore, Figure 2 is close to the right
picture for insight #2.

Insight #3: For the LTV and the ROF functionals, the first variation computed for care-
fully chosen curves in the space of images yields precise formulas prescribing the curvature
of minimizer level sets. L'TV example: when the the boundary of the minimizer ¥ diverges
from the boundary of the input set €2, its curvature is exactly A (i.e. it is an arc of a circle
of radius 1/)). Additionally, the boundary of ¥ in the interior of Q bulges out, while the
boundary of ¥ exterior to €2 bulges in. Together with #1 above, this permits us to generate
exact solutions as shown in center subfigure of Figure 3.
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Figure 3: Left to right: 9Q, 93 (L'TV) with 99 superimposed for comparison, and parts of
a few level sets of the ROF minimizer, with part of 02 superimposed for comparison.

What can we do with these insights? A great deal! Using families of exact solutions,
we can, for the first time, understand the precise convergence properties of these important
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methods in image analysis. Our ability to generate these families of exact solutions also
suggests development of a hybrid analytic/numerical approach to computing minimizers
given input data f. Using the same tools from geometric measure theory , we can develop
similar insights into the precise nature of minimizers for related, widely used functionals.
Finally, we can leverage detailed knowledge obtained into development of new variational
methods tuned specifically for the data at hand. It is precisely these things that we
now propose to do.

(I) We Propose: to use carefully selected, nontrivial exact minimizers to precisely char-
acterize convergence of numerical methods in use. These include (1) gradient descent, (2)
lagged diffusivity fixed point iterations, and (3) the Chambolle duality method. We will then
be able to quantify the uncertainty introduced or removed by the use of these algorithms.
(IT) We Propose: to develop a hybrid analytic/numerical scheme for TV based methods.
We will begin (ITa) with the L'TV functional. After success there, we will (IIb) tackle
the more complicated ROF functional. We expect a speedup, sometimes significant, in
comparison to other methods in use. Additionally, precise control of solution errors should
be easier to implement.

(IIT) We Propose: to generate similar sharp characterizations for a a generalized functional
given by,

Fy(u) = / 6(Va)dz + \ / Pu— flPda, (@)

where ¢ is a positive 1-homogeneous function, P is a linear operator, and p = 1 or 2. The
choice of ¢ is used to build directional preferences into Fy(u). An example is crystal growth
where we choose ¢ based on the Wulff shape. See [4] for more details on such a model.

Milestones: Convergence characterization (subproject I) will occupy the first year and
approximately the first quarter of the second year. Development of a hybrid method for the
L'TV functional (Subproject ITa) will be completed sometime after the first year, but before
the halfway point of the project. Development of a hybrid method for the ROF functional
(Subproject IIb) will begin after the completion of I1a and be completed by the end of the
third year. Theory for the generalized functional (subproject I1I) will begin immediately and
will extend throughout the entire three year period.

Impact for Science and LANL Programs:

It is universally recognized that quantification of uncertainty in analysis of experiments
and simulations has too long been ignored or inadequately dealt with. Understanding the
precise nature of algorithmic convergence and the exact form of minimizers permits us to
know 1) how close we are to a minimizer and 2) what our methods of analysis are inserting,
removing or enhancing in the data. These are key steps in quantifying the propagation of
uncertainty along the analysis path.

Example: Wave Collider Experiments. In this experiment, two cylinders of high ex-
plosive (HE) are joined together on end. Opposite ends are ignited. The burn fronts meet
and pass through each other. Continuing on, they form a lens shaped region defined by the
oppositely moving fronts. This can be seen clearly in the left-most subfigure of Figure 4. The
total variation inversion (right) is a great improvement over the typical inversion (center).
But for the purposes of precise quantification of errors and propagation of uncertainties, we
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must have a precise understanding of what the analysis methods do to critical features such
as the edges.

Figure 4: Left to right: raw radiograph of HE wave collider experiment, unregularized Abel
inversion, and TV regularized Abel inversion.

Given recent, increased emphasis on quantification of uncertainty, our proposal
to provide significant new tools for that purpose is right on target. Precise, 2-
dimensional characterization for general minimizers is completely new for variational meth-
ods in image analysis, promising to yield significant advances both theoretically and compu-
tationally.

Summary: To quantify uncertainties in an analysis path, one must have precise
characterizations of the methods used. Our proposed study and exploitation of
sharp characterizations of minimizers give us several tools that move us a great
deal closer to the goal of rigorously defensible quantification of uncertainty. In
addition, the understanding gained can be leveraged into the construction of
new, more powerful methods of computation and analysis.

(1) W. K. Allard. On the regularity and curvature properties of level sets of minimizers
for denoising models using total variation regularization; I. Theory. Preprint, 2006.
http://www.math.duke.edu/ wka/papers/bv.pdf

(2) W. K. Allard. On the regularity and curvature properties of level sets of minimizers
for denoising models using total variation regularization; II. Examples. Preprint, 2006.
http://www.math.duke.edu/ wka/papers/examples.pdf

(3) T. F. Chan and S. Esedoglu. Aspects of total variation regularized L' function ap-
proximation. STAM J. Appl. Math., 65(5):1817-1837, 2005.

(4) S. Esedoglu and S. J. Osher. Decomposition of images by the anisotropic Rudin-Osher-
Fatemi model. Commun. Pure Appl. Math., 57:1609-1626, 2004.

(5) S. Esedoglu and K. R. Vixie. Some properties of minimizers for the L' TV functional.
In preparation. http://ddma.lanl.gov/"vixie/private/L1TV-rough-draft.pdf

(6) L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60(1-4):259-268, November 1992.

Kevin R. Vizie 6


http://www.math.duke.edu/~wka/papers/bv.pdf
http://www.math.duke.edu/~wka/papers/examples.pdf
http://ddma.lanl.gov/~vixie/private/L1TV-rough-draft.pdf

20070187ER

Curriculum Vitae: Kevin R. Vixie

Education Ph.D. 12/2001 Mathematics (Systems Science Program), Portland State Uni-
versity, Adviser: Andrew M. Fraser, Dissertation: “Signals and Hidden Information”.

Member of LANL Technical Staff, T-7
Relevant Publications :

1.

2.

Nonlinear reqularizations of TV based PDEs for image processing (with A Bertozzi,
J Greer, and SJ Osher), in Contemporary Mathematics vol. 371, AMS 2005
Some properties of minimizers for the L' TV Functional (with S Esedoglu), in
preparation, 2006

Abel inversion using total-variation reqularization (with TJ Asaki, R Chartrand,and
BE Wohlberg), Inverse Problems, no. 21, pp. 1895-1903, 2005
http://math.lanl.gov/Research/Publications/Docs/asaki-2005-abel.pdf

. Abel inversion using total variation regularization: Applications (with TJ Asaki,

PR Campbell, R Chartrand, CE Powell, and BE Wohlberg) Submitted, 2005
Defensible metrics and merit functions (with TJ Asaki) in “Los Alamos Science”,
2005 LA-UR-04-8498.

Selected Organizational Activities :

*

2002 LANL Radiography Analysis and Simulation Tools Workshop: On
organizing committee.

2002 LANL Image Analysis Workshop: Main organizer, December 2-6 2002
http://ddma.lanl.gov/public/conference/2002-1wia/

2003-2005 IPAM Research in Industrial Projects for Students (RIPS):
Industry sponsor, http://www.ipam.ucla.edu/programs/rips2005/

2005 IPAM Graduate Summer School, Chair and lecturer: “Intelligent
Extraction of Information from Graphs and High Dimensional data.”
http://www.ipam.ucla.edu/programs/gss2005/

Current Projects: Data Driven Modeling and Analysis (DDMA) team projects include (1)
several on metrics and regularization for validation of weapons codes, (2) radiographic
inversions for both Proton and X-ray measurements, (3) development of novel metrics
for high-dimensional data (LDRD), (4) an intelligence community project (a difficult
inverse problem), (5) development of IDA, a flexible, extensible suite of algorithms
for the analysis of image data, (6) part of the muon radiography LDRD-DR, and (7)
many papers looking at various theoretical and applied aspects of all of this work. My
personal research focus is on geometric measure theory, high-dimensional geometry,
and algorithms based on these tools for challenging data problems. I raise or help raise
a large portion of the DDMA budget of 2.5M$/year.

Current Collaborators WK Allard Duke, TJ Asaki LANL, A Bertozzi UCLA, EM Bollt
Clarkson, P Campbell LANL, DG Caraballo Georgetown, R Chartrand LANL, A Davis
LANL, S Esedoglu Michigan, JB Greer Courant, K Ide UCLA, J Kamm LANL, SJ
Osher UCLA, V Pisarenko I[ITEPTMG, P Schultz Clarkson, D Sornette UCLA, M Sottile
LANL, BE Wohlberg LANL,

Kevin R. Vizie 7


http://math.lanl.gov/Research/Publications/Docs/asaki-2005-abel.pdf
http://ddma.lanl.gov/public/conference/2002-lwia/
http://www.ipam.ucla.edu/programs/rips2005/
http://www.ipam.ucla.edu/programs/gss2005/

20070187ER

Curriculum Vitae: William K. Allard

Education: Villanova University, Sc.B., June 1963

Brown University, Ph.D., June 1968

Doctoral Dissertation:

On Boundary Regularity for Plateau’s Problem,
supervised by Wendell H. Fleming

Employment:

Research Assistant, Brown University, 1967-1968
Instructor, Princeton University, 1968-1969
Lecturer, 1969-1970

Assistant Professor, 1970-1975

Professor, Duke University, 1975-

Fellowships, Honors, etc.:

NSF Cooperative Graduate Fellowship, 1968-1970

Alfred P. Sloan Foundation Fellowship, 1970-1972

Invited Speaker at 1973 Annual Meeting of the

American Mathematical Society

Invited Speaker at 1974 International Congress of Mathematicians
Managing Editor, Duke Mathematical Journal 1983-1985
Co-chairman, 1984 American Mathematical Society Summer Institute
Chairman, Mathematics Department, Duke University, 1985-1986

Selected Publications:

1.

On the first variation of a varifold, Ann. of Math. 95 (1972), 417-491.

2. On the first variation of a varifold: Boundary behavior, Ann. of Math. 101 (1975),

418-446.

On the radial behavior of minimal surfaces and the uniqueness of their tangent cones,
(with F. J. Almgren, Jr.), Ann. of Math. 113 (1981), 215-265.

(with J.A. Trangenstein) On the performance of a distributed object oriented adaptive
mesh refinement code, Preprint, October 1997, http://wuw.math.duke.edu/ " wka/
On the regularity and Curvature properties of level sets of minimizers for denoising
models using total variation reqularization; I. Theory, Preprint,
http://www.math.duke.edu/ wka/papers/bv.pdf

On the reqularity and curvature properties of level sets of minimizers for denoising
models using total variation reqularization; II. Examples, Preprint,
http://www.math.duke.edu/ wka/papers/examples.pdf

Computing length and areas of boundaries of regions given a binary representation, In
preparation.

Kevin R. Vizie 8


http://www.math.duke.edu/~wka/
http://www.math.duke.edu/~wka/papers/bv.pdf
http://www.math.duke.edu/~wka/papers/examples.pdf

20070187ER

Curriculum Vitae: Selim Esedoglu

Employment

Department of Mathematics ~ Phone: (734) 936-9926

University of Michigan Email: esedoglu@umich.edu

Ann Arbor, MI 48109 Web:  http://www.math.lsa.umich.edu/"esedoglu

Professional Preparation

2000 Ph.D. in Mathematics, Courant Institute, Thesis advisor: Robert V. Kohn
1998 M.S. in Mathematics, Courant Institute
1996 Sc.B. in Mathematics, Brown University. Magna cum laude, honors in mathematics.

Appointments

2005-Present Assistant Professor. Mathematics, University of Michigan Ann Arbor
2002-2005 CAM Assistant Professor. Mathematics, UCLA
2000-2002 Postdoctoral Associate. IMA, University of Minnesota

Research Interests

Image processing, computer vision; partial differential equations, calculus of variations; con-
vergence of numerical approximations.

Honors

04/2001 Kurt O. Friedrichs Prize for an Outstanding Dissertation, Courant Institute
05/1996 David Howell Prize for Excellence in Mathematics, Brown University
1992-1996 Granoff International National Scholarship, Brown University

Selected Publications

1. S. Esedoglu. An analysis of the Perona-Malik scheme. Comm. Pure Appl. Math. 54
(2001), pp. 1442 — 1487.

2. S. Esedoglu. Stability properties of the Perona-Malik scheme. To appear in SIAM J.
Numer. Anal.

3. S. Esedoglu, S. J. Osher. Decomposition of images by the anisotropic Rudin - Osher -
Fatemi model. Comm. Pure Appl. Math. 57 (2004), pp. 1609 — 1626.

4. T. F. Chan, S. Esedoglu. Aspects of total variation regularized L' function approxi-
mation. SIAM J. Appl. Math. 65:5 (2005), pp. 1817 — 1837.

5. T. F. Chan, S. Esedoglu, M. Nikolova. Algorithms for finding global minimizers of
denoising and segmentation models To appear in SIAM J. Appl. Math.

6. S. Esedoglu, Y.-H. Tsai. Threshold dynamics for the piecewise constant Mumford —
Shah functional. J. Comput. Phys. 211:1 (2006), pp. 367 — 384.

Kevin R. Vizie 9


http://www.math.lsa.umich.edu/~esedoglu

